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RESPONSE OF COMPLEX SK&L STRUCTURES 

M AERODYNAMIC NOISE 

By Jerry W. Schweiker and Robert E. Davis 

SUMMARY 

This report presents the results of a research study on the high 
frequency response of shell-type structures to a buffeting aerodynamic 
environment. The major emphasis has been on the development of a method 
for calculating the statistics of shell response due to aerodynamic noise. 
The basic matrix formulation of the response equations is developed. The 
aerodynamic input is discussed with particular emphasis on the use of 
statistically reduced wind tunnel pressure data. Various methods for 
obtaining the necessary vibration characteristics of the shell structure 
are presented. With flight acceleration data available from the Mercury/ 
Atlas flights, calculated response data have been determined for compari- 
son purposes. This comparison shows good agreement in predicting over-all 
response levels. 

INTRODUCTION 

The problem of structural response to buffeting flows excitation has 
been of considerable interest since a series of launch-vehicle failures 
occurred during the initial phase of the space program. This interest is 
illuminated by recent papers on the subject (References 1, 2, and 3). 
Consequently, not only have analytical studies been intensified, but more 
detailed "detective" work has been concentrated in the area of collating 
fluctuating pressure measurements from flight and wind tunnel tests. 
This, in turn, has led to better defined wind tunnel programs, and more 
efficient methods of data reduction. As an integral part of this research, 
NASA (Langley Research Center) supported a two year study by McDonnell Air- 
craft Corporation, the primary goal being a reasonable method of predicting 
the high frequency response of shell-type structures to fluctuating 
pressures resulting from buffeting flows. 

The investigation of the shell response problem is logically resolved 
into three distinct phases: (1) definition of the aerodynamic excitation, 
(2) deflnition of the vibration characteristics of the structure (mode 
shapes, damping, generalized masses, and frequencies), and (3) development 
of the response equatias. Each of these phases were investigated in con- 
siderable depth, not only as compartmentalized areas, but also from the 
standpoint of mutually compatible descriptions permitting the development 
of an over-all integrated approach for determining the shell response in a 
buffeting flow. Based on these investigations, an IBM 7094 program has 
been developed which will calculate the deflection and acceleration spectra 
of a shell-type structure excited by aerodynamic buffeting. This program 
accepts aerodynamic excitation input in the form of statistical data 
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reduced from wind tunnel tests with the option of including either theoreti- 
cal or experimental vibration characteristics. 

This report presents the final technical results and conclusions 
resulting from the two year research study. The aerodynamic aspects, 
shell vibration characteristics, and the response equations are covered 
in this sequence with an additional section included on comparison studies 
of flight and calculated acceleration data. Detailed analytical develop- 
ments of the aerodynamics and response which are a direct result of this 
research are presented in References 4 and 5, whereas the IBM 7094 response 
program description is presented in Reference 6. The reduction of fluctu- 
ating pressure data from various wind tunnel tests are presented in 
References 7 - 11. In addition, Reference 12 presents a collation of 
fluctuating buffet pressures. 

Special acknowledgment should be made to J. T. Weissenburger for his 
valuable contributions as project leader for the first year of this contract. 
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I 
SYMBOLS 

A Surface area 

$3 B",t C; Mode shape coefficients for displacements w, u, v, respec- 
tively 

Panel dimensions in x, y direction, respectively 

C 

EPrms 

Gms 

Co-spectrum, real part of S defined below 

Root-mean-square pressure divided by dynamic pressure 

Modification factor (Equation A4) 

Generalized force 

Frequency in cycles per second 

Function of frequency defined in text 

Root-mean-square radial acceleration divided by gravita- 
tional constant having same units 

Function of frequency defined in text 

Length of shell frustum 

M Generalized mass 

m Number of longitudinal half-waves of a given mode 

N Number of samples used to determine probability distribution 

n Number of circumferential waves of a given mode 

P Pressure 

Q Quad-spectrum, imaginary part of S defined below 

Q Normal coordinate 

sa Dynamic pressure 

R Auto-correlation or cross-correlation depending upon: 
(1) alike or unlike superscripts, or (2) alike or unlike 
Vari8bleS within parenthesis 

r Radius of shell 

V 



S 

X 

Y 

T 

t 

UC 

%Y 

WJ u, v 

Z 

Power spectrum or cross-spectrum depending upon: (1) alike 
or unlike superscripts, or (2) alike or unlike variables 
within parenthesis. 

Note: S(f&, S(ff) refers to the mathematical definition 
of the power spectral density functions defined over 
( -a, m), whereas S(w), S(f) refers to the physical 
power spectral density functions defined over (0, a). 

(1) Coordinate defining distance along cone generator from 
apex to a point on shell or (2) panel coordinate. 

Panel coordinate 

Period of time over which spectral functions are determined, 
theoretically approaching infinity 

TILE! 

Convection velocity 

Freestream velocity 

Radial, tangential, and circumferential displacements 

Reciprocal of complex frequency response function 

Streamwise decay rate 

Complement of conical shell half-angle 

Circumferential decay rate 

Kronecker Delta 

Ratio of damping to critical damping 

Defined in text 

Coordinate defining angular position on shell 

L/mu 

Defined in text 

Standard deviation 

Time shift for auto-correlation or cross-correlation 
functions 

Time corresponding to maximum value of cross-correlation 
function 

Radial modal deflection 
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Phase angle 

R Reduced frequency 

w Frequency in radians per seconds 

Subscripts and Superscripts 

A 

a& 

F 

I,J 

k,l 

N 

PYq>w 

E 1 

1 .I 
1 JT 
(7’ : 

* 

( > 

Indicates relationship to area 

Indicate response points a and b, respectively 

Indicates relationship to generalized force 

Indicate modes I andJ, respectively 

Indicate sub-areas k and 1, respectively 

Indicates normalized function 

Indicates relationship to pressure, normal coordinate, and 
deflection, respectively 

Matrix Notation 

Square matrix 

Row matrix 

Transpose of row matrix 

Column matrix 

Note: Double subscripts or superscripts appearing on symbols 
within a matrix imply all possible combinations of 
themselves as they vary from unity to their maximums. 
As the subscripts or superscripts vary, they give the 
row and column designation within the matrix; the first 
subscript or superscript gives the row, and the second 
gives the column. Thus, the variability of the sub- 
scripts or superscripts is limited by the number of 
rows and columns in the matrix. 

Miscellaneous Notation 

Denotes complex conjugate 

Parenthesis following a symbol indicates that the symbol is 
a function of those variables appearing within the psren- 
thesis 
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<> Indicates a time average 

Differentiation of a variable with respect to time is indicated by dots over 
the variable. 
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AERODYNAMICS 

Probably the most perplexing area of investigation inherent with the 
determination of the response is the aerodynamic representation of the 
fluctuating pressures acting on the structure. Some research has been 
conducted in the theoretical aspects of the turbulent flow field with as 
yet few practical results. A promising approach toward understanding the 
phenomenon occurring in a turbulent boundary layer is the wave guide model 
for turbulent shear flow as developed by Landahl (Reference 4) as part of 
this study. The basic formulation of this model is that the turbulent 
fluctuations in a boundary layer may be represented mathematically by a 
superposition of shear waves of random phase and orientation in which the 
mean shear flow acts as a wave guide. The stability characteristics of 
a turbulent boundary layer velocity profile and the relation of such to 
the statistics of the pressure fluctuations are consequently investigated. 
Although, admittedly, this report is just an initial step in the complex 
problem of turbulence, there is hope that further development might lead 
to better understanding of the turbulence problem. 

Since there exists at this time no 'clean" mathematical representation 
of the fluctuating pressures inherent in buffeting flows, the response 
analysis developed herein is based on the use of experimentally obtained 
aerodynamic data. These data may be determined either by wind tunnel 
testing or in-flight measurements. With the increased emphasis on space- 
vehicles, a wealth of wind tunnel test data is being obtained for many 
spacecraft configurations. References 7 - 11 are typical compilations of 
reduced wind tunnel data of various scaled spacecraft-booster configura- 
tions. These include typical power spectra, cross-spectra, auto-correlations 
and cross-correlations. Realistically, the present state-of-the-art in the 
aerodynamics representation dictates the use of appropriate spectral data 
reduction of experimentally measured fluctuating pressures for determining 
the input data to be used in the response studies. It is seldom practical 
to obtain sufficient data to provide complete input information; conse- 
quently, the experimental data will generally be used to fit analytic 
expressions for extrapolation purposes. 

The fluctuating pressure data are used in response computations in 
either of two ways, depending on the assumptions made when deriving the 
response equations. For both cases, the shell surface is divided into 
many small sub-areas (Figure 1) for computational purposes. One method 
of handling the pressure data is to assume that the measured pressure at 
the center of a sub-area is representative of the pressure field at all 
points within that sub-area. The correlation between any two points in 
different sub-areas is assumed to equal the correlation between the centers 
of the two sub-areas. This is henceforth classified as the constant 
correlation assumption. A pressure power spectrum is required for each 
sub-area and a pressure co-spectrum (real part of the cross-spectrum) is 
needed for every pair of sub-areas. This information may be determined by 
standard data reduction techniques such as those used to obtain the data 
given in References 7 - 11. This assumption is plausible provided that 
it is feasible to divide the total surface into sufficiently small 



Figure 1 - Coordinate System for Truncated Conical Shell 



sub-areas. For the cases examined in this study division into sufficiently 
small areas was not practical. Therefore, a second fluctuating pressure 
idealization was employed as covered in the following paragraphs. 

Instead of assuming a homogeneous pressure distribution of each sub-area, 
a more realistic model of the pressure disturbances is utilized. When the 
pressure fluctuations are generated by a protrusion or by an abrupt change in 
contour, a simple convective flow pattern is established. This is modeled as 
a simple decaying convected flow pattern in which the spatial decay rates are 
determined from experimentally obtained cross-correlations between transducer 
pairs in both the streamwise and circumferential directions. A continuous 
pressure distribution over the entire surface is established which may be 
integrated over each sub-area to improve on the constant correlation 
assumption. This approach .is given detailed treatment later. 

Typical streamwise decay rates are given in Figure 2 which is taken 

I I I I 

Data from 7% (Scale) and 32% (Scaleltests 

0 Mach 0.8 

0 Mach 0.9 

A Mach 1.0 

0 Mach 1.2 

b Mach 1.4 

I Analytic expressions I 

0 4 8 12 16 20 24 28 32 36 40 44 

x2 - xl=Ax - inches (full scale) 

Figure 2- Streamwise Pressure Correlation - Mercury/Atlas Adapter 

from the data of References 7 and 8. The normalized cross-correlation of 
two pressures at xl and x2, RR(T, xl, x2), is obtained from 

RN(~, X1, X2) = Rmax(T, x19 x2)/&(0, xl) R(O, x2) (1) 
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where-R(O,xl) and R(O,x2) are the auto-correlations for T = 0, and 
R~~x(~,xl,x2) is the maximum value of the un-normalized cross-correlation 
function occurring when o = ?. The correlation of the pressures between 
streamwise transducer pairs on the Mercury/Atlas adapter showed that the 
use of an exponential spatial decay, e-o&, is reasonable. 

-oh 
The analytical 

curves for e for two values of cr are given for illustrative purposes. 
It is of interest to note that the decay rate appears to increase with 
increasing Mach number. The circumferential decay rate data,e-Brm,is 
similarly given in Figure 3. The actual decay rates used in subsequent 
response computations were extrapolated from Figures 2 and 3 in a manner 
discussed later. 

0.8 

2 0.6 
- 

UT- 

e 
z 0.4 

ot 

0.2 

0 -_ 
5 1U 1 

.lrAO -I-- 

0 Mach 0.9 - 

Cl Mach 1.0 

A Mach 1.18 I 
/ 
-I- 

20 25 30 35 40 45 

Ad- Degrees 

Figure 3 - Circumferential Pressure Correlation-Mercury/Atlas Adapter 

The degree of excitation depends on the velocity at which the decaying 
pattern is convected, as well as the streamwise and circumferential decay 
rates. The convection velocity may be determined by the relation Uc = Ax/;, 
where : is the time shift at which the cross-correlation function is a maxi- 
mum and &x is the separation between points xl and x2. A value of UC = 0.4 U, 
was used for the work herein, although this is a lower value than asso- 
ciated with a well developed aerodynamic boundary layer, experimental 
investigations have shown reduced values of convection velocity associated 
with flows generated by a protrusion or cone-cylinder intersection. 
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In regard to the aerodynamic excitation of a structure, the effect of 
vehicle angle of attack on the pressure input parameters has been considered. 
An option exists in the response program to allow input of different pres- 
sure levels for each sub-area of the structure (total of 112). However, it 
has been discovered that small angles of attack have negligible effect on 
the pressure input for the nearly cylindrical adapter sections behind conical 
shapes like the Mercury capsule. A comparison of the power spectra and 
normalized co-spectra (References 7, 8 and 10) showed small effect due to 
small variations in angle of attack. Of course, for precise response calcu- 
lations, it would be desirable to have wind tunnel data at all of the actual 
flight conditions; however, from the standpoint of cost and time, this is 
usually not feasible. It is felt that available wind tunnel data on a given 
configuratim can be used with reasonable expectation that the final response 
calculations will be insensitive to small variations in angle of attack. 

An attempt was made to relate the fluctuating pressures, Ap on the 
configuration surface to the total drag of the body (Reference 13 "p 

s, 
. How- 

ever, since Aprms is a characteristic value of a particular point on the 
vehicle surface while the total drag is an integrated quantity of pressure 
and shear forces over its surface, the drag can only supply information on 
sn over-all basis. Depending on local conditions, protuberances, sharp 
corners, shock wave interactions, cavities, etc., the actual pressure fluc- 
tuations in the vicinity of such points and at points downstream from these 
may be considerably different from the mean level. Thus, at the present, 
the prediction of the actual fluctuating pressures at such points and their 
downstream influence is still a matter of crude engineering judgement and 
relies exclusively on direct experimental methods. 

Other fluctuating pressure data have become available since Reference 
13 was published and analysis of these data suggests the feasiblity of 
correlating fluctuating pressure levels on various configurations. Compila- 
tions of fluctuating pressure data from the Mercury/Atlas and Saturn/Apollo 
configurations (Reference 12) has revealed several interesting preliminary 
trends. 

One of the trends indicated in Reference 12 is illustrated in Figure 
4 which shows the variation of ACprms with Mach number for the Mercury/ 
Atlas configuration. In general, the fluctuating pressure level decreases 
with increasing Mach number above 1.0. This was also true for other con- 
figurations. 

Another result of this compilation of fluctuating pressure data is the 
statistical distribution of all LCp data. An example of the probability 
distribution of the pressure levelsr% shown in Figure 5 which gives the 
distributions separately for the two configuraticms and also for the com- 
bined total. All LYCp,,, data were plotted irrespective of Mach number, 
transducer location, and angle of attack. Superimposed upon this figure 
for reference are three Rayleigh distribution curves for which the analyti- 
cal distribution is given by 

Prob (&Cprms/u) =(PCprms/o)e-(Mp~s)2/2c2 (2) 



.1: 

.l( 

.01 

AcP rm 

.Ol 

.O. 

.0: 

0.C 

Angle of Attock = -3O 

s 

6- Tll .-I= 

T2l.y. 

TlO. 

4- 

2- 

)- I 
1.0 

I 
1.1 

Moch.number 

I I I 
1.2 1.3 1 .4 

Tl2C 

EO 

TlC 
;$,TJC, 

T23 

fyi T24 

TlO 

T22 

Figure 4 - Fluctuating Pressure Coefficients far Mercury/Atlas - Escape Configuration 
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where o is the standard deviation. This type of curve can yield valuable 
information for preliminary design purposes. An explanation of the use of 
random process theory and application to physical problems is given in 
Reference 14. 

a .= standard deviation 

.16 

Ni 
- .12 

N tot 

.08 

0 

No. of samples 

- Total (2423) 

- - - Mercury (1194) 

m . . . ..I.... Apollo (1229) 

Rayleigh distributions 

.02 .04 .06 .08 .lO .12 .14 .16 .18 

ACP 

Figure 5 - Probability Density of Composite ACprmsData 

STRUCTURAL VIBRATION CHARACTERISTICS 

With the complexities inherent in the geometry of spacecraft structures 
(rings, stiffeners, concentrated packages, etc.), most analytical represen- 
tations of the natural vibration characteristics for a component structure 
are extremely complicated. For these complex structures, any detailed 
theoretical shell vibration analysis entails a great amount of time, labor 
and computer facilities. However, valuable insight on the vibration charac- 
teristics of certain systems can be obtained from relevant published work. 
In many cases, for preliminary shell response calculations, the structure 
can be idealized such that rough estimates of mode shapes and frequencies 
can be obtained. 
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The analytical representation of the dynamics of the Mercury/Atlas 
adapter used in the present studies was based on a Rayleigh energy method 
adapted for an axisymmetric ring-stiffened conical shell, Reference 15. 
The assumed deformation shapes for the conical shell displacements u, v, 
and w (Figure 6) are: 

Figure 6 - Coordinate System Employed for .Conical Shell Vibration Studies. 

x-x1 
w = Az[x cos E sin - 

%I 
cos n 8 I[cos(Wmn t -$&l 

X-Xl 
u = B",[x cos a sin 7 sin n Q][cos(wm, t -$mn)] 

In 

(3) 

(4) 

v = Cz[x cos Cr cos 2% sin n ~][c0s(w,, t -qmJJ 
)Lm 

(5) 

where h, = L/mrr, with m the number of longitudinal half-waves, n the number 
of circumferegtial waves, and L the length of the shell frustum along a 
Tne,,t,. Am, B$ and Ci are the generalized coordinates for each mode 

m,n . 
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The above theoretical analysis was modified to account for the reduc- 
tion of stiffness due to warping of the stiffener flanges. This modifica- 
tion seems justified since the actual structure consisted of thin deep 
flanges which are susceptible to warping. The inclusion of the warping 
modification reduced the lowest analytical frequency (n = 2, m = 1) from 
215 cps to 172 cps, which is in better agreement with the experimental 
frequency as determined from ground vibration tests. For the Mercury/Atlas 
adapter, the natural frequency spectrum so calculated is shown in Figure 7 
along with corresponding measured experimental data. A similar analysis 
was conducted On this configuration in Reference 16 by ideaJ,izing the shell 
as a cylinder. 

To allow for arbitrary circumferential orientation of the ring modes, 
a complementary set of modes should be included which incorporate the com- 
plementary trigonometric functions of 8 in Equations (3), (4), and (5). 
These complementary modes have been included in the response program when 
the orientation of the modes is arbitrary. When the orientation of the 
modes is fixed in some manner, say by a very heavy mass attached to the 
shell, these additional modes are unnecessary. This phenomena has been 
discussed in References 13 and 17. 

In many cases, this form of analysis is insufficient to adequately 
represent the vibration characteristics of the shell, especially with heavy 
equipment attached to the shell. In this case, there usually exists com- 
pletely "distorted!' mode shapes which cannot be represented by a single 
sine or cosine mode number. Elaborate structural analysis is then required 
such as presented in Reference 18. 

Modified for Out-of-Plane Ring Warping 

600 r m=l 
. . . . . . . . . . m=2 

--- m=3 

0 Experimental m= 1 
/ 

01 I I I I I I 
0 1 2 3 4 5 6 

Circumferential waves - (n) 

Figure 7 - Mercury/Atlas Adapter-Natural Frequency Spectrum 



Even with sufficient analytical tools at hand, the complex systems 
encountered in the space industry are usually not amendable to treatment by 
theoretical methods. Consequently, one must resort to experimentally 
determined vibration characteristics. Three methods are available to fulfill 
experimental evaluation of a particular shell structure: (1) dynamically 
scaled model tests, (2) full-scale tests, and (3) component matching tech- 
niques. The actual selection of any method is dictated by factors such as 
cost, time, available facilities, complexity of structure, etc. Each method 
has advantages and disadvantages which must be considered. Although dynami- 
cally scaled models are valuable, or even necessary in some cases, the model 
expense and scaling problems usually eliminate this method for obtaining 
adequate vibration data on localized sections such as adapters. Sound ground 
vibration testing techniques on prototype structures would give the most 
beneficial and complete data. The Gemini/Titan adapter was tested in this 
manner with mode shapes, frequencies, generalized masses, and damping ratios 
determined for 14 modes. It was found that much care was required to separate 
certain closely spaced modes. Reference 19 summarizes the methods and results 
of these tests. The component matching technique (Reference 20) appears to be 
feasible for determining vibration characteristics for assembled structures. 
This method in general can be used if data is obtained on integral parts of 
the system before final assembly. 

In spite of the numerous methods of obtaining vibration characteristics 
of shells (analytical and/or experimental), the final input of vibration 
data to be used for determining the response of a particular configuration 
must be based on sound engineering judgment. With this in mind, the response 
program to be discussed subsequently has been developed with two options 
available for the input of vibration data: (1) the use of theoretical 
analysis based on Equations (3) through (5) including complementary modes, 
and (2) a Fourier series representation which allows incorporation of mode 
shapes other than the simple trigometric functions. This latter option is 
handled by synthesizing the mode shapes determined experimentally or by more 
complex analysis by Fourier series representation (Reference 6). The perti- 
nent vibration data required by the response program is the number of modes 
(maximum of 25), mode numbers (n,m) if first option is employed or Fourier 
coefficients for the second option, and corresponding generalized masses and 
damping ratios for each mode. 

The concept of damping is in itself a complex problem, with the usual 
solution to the problem being that of simply assuming small damping (1%). 
However, in determining the response, the magnitude of peak-response at 
resonant frequencies isinverselyproportional to the damping ratio (5) used 
in the calculations; consequently, sound experinced judgment, or reliable 
test data should be used. In the vibration of complex structures, so many 
interactions occur that an adequate representation of the damping ratio is 
difficult. As discussed in Reference 21 localized damping at structural 
joints is not only influenced by the material and configuration, but also by 
the firmness or tightness of the connection, and also by the mode of vibra- 
tion. In the ground vibration tests of the Gemini/Titan configuration, 
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damping values of 1% to 5% were determined. In the comparison of the flight 
and calculated response studies made on the Mercury/Atlas adapter, an average 
of the available damping ratios, 5 = .02, was determined from the limited 
decay data taken on this configuration (Reference 23). 

RESPONSE ANALYSIS 

General Discussion 

Reference 5 gives a detailed analysis of the response of shell-type 
structures to random pressure excitation. The derivation is slanted toward 
structures represented as truncated conical shells, which includes the 
idealization of a moderately tapered spacecraft adapter. This analysis 
results in equations for the deflection and acceleration response co-spectra 
or as special cases, the response power spectra which are more generally of 
interest in determining structural adequacy. In the discussion that follows, 
the pertinent equations derived in Reference 5 will be given along with the 
assumptions necessary to derive them. 

Development of Response Equations 

Up to this point, it has not been specified which response power 
spectrum is to be determined; i.e., which coordinate response, u, v, or w, 
is desired. Since the method of calculating any of these coordinate responses 
is identical, it is arbitrary whether one or all are obtained. Because the 
only measured data available is for the radial coordinate w, it has been 
chosen as the coordinate for which the response equations are developed. 

Assuming the shell indicated in Figure 1 is lightly damped with radial 
coordinate normal modes ~~(x,g), corresponding to a set of normal coordinates 
91, the radial shell response at any point a to pressure excitation p(x,Q,t) 
is given by: 

w(xa,Qart) = l&Il{q+)\ 

61(t) + qpQ;l(t) + w&t) = & i’ Impl(x,e)p(x,e,t),(x)de~ (7) 
x1 O 

The assumption of light damping allows one to neglect cross damping terms 
in the above equation. 

The excitation pressure of interest here is that due to a turbulent 
aerodynamic flow field. Consequently, p(x,g,t) is random in nature which 
requires that Equations (6) and (7) be solved in terms of statistical 
averages. With the assumption of an ergodic random process (a discussion 
of what this involves is given in Reference 5), equivalent statistical 
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averages may be obtained from either time averages over infinite extent or 
ensemble averages. Because p(x,@,t) is available only as a function of 
time, it is necessary to use time averages. One of the requirements of an 
ergodic process is that it be stationary; with this assumption the response 
cross-spectrum between any two points a and b (see Figure 1) can be related 
to the Fourier transforms of the response as follows: 

T T 
SEb&) = izm & I emitiw(xa,Oa,t)dt -.& eitiw(xb,s,t)dt 

-T 

The notation +w is used to indicate that the cross-spectrum defined by 
Equation (8) covers both the positive and negative frequency ranges. In 
practice, W(Xa,ea,t) and w(xb,Bb,t) are usually truncated such that they 
equal zero for t 2 T, where T is a long time. Then Equation (8) can be 
written as: 

s;b((fw) = 
1 

5 +a,%- +4 Je-%,Qb,~) 

where 

w(~,&,Aw) = .fmesiwt w(x,,Q,,t)dt 

$+(xb,@&d) = Imeiwt w(q+-&)dt 
- 

(8) 

(9) 

(10) 

(11) 

It is not actually necessary to make the truncation assumption at this time, 
although to do so allows a more direct and simpler mathematical derivation, 
and pre-recognizes the fact that a similar assumption concerning the pressure 
excitation p(x,B,t) would be necessary later. In other words, it is recog- 
nized that the final equations must ultimately depend upon the excitation 
p(x,g,t) which can only be determined for finite time. 

Substitution of Equations (6) and (7) into Equation (8) and after consid- 
erable manipulation, the following equation results for the deflection response 
cross-spectrum. 

sy(kw) = IL zI(+wlz*(2w) i' ?" i" 
J Xl 0 Xl 0 

~~(s,(x,Q,x',0?,lw)~~(x,e)i~(x',Q~) 
\ 

r(x)r(x*)dQdxd0'dx' 
> 

(12) 

03) 
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where 

ZIW = MIwI 2(1-(~~+i2(I(i$) 

z",(h) = MJ"J 2 (l - (&)2 - i2cJ (<)) 

(14) 

The quantities ZI and Z"J above are reciprocals of the complex frequency 
response function for modes I and J, respectively. The primes in Equation 
(13) are to indicate the order of integration. 

Equation (13) gives the normal coordinate cross-spectrum between any two 
normal coordinates qI and q~. As first pointed out by Powell (Reference 23) 
these cross-spectra represent the statistical dependence between normal 
coordinate responses. When I and J are equal, Equation (13) gives a normal 
coordinate response power spectrum. 

The function S (x,~,x',~',?w) is the pressure cross-spectrum between 
any two points (x,QP and (x1,0') on the shell surface. It is given by a 
relationship similar to Equation (g), i.e., 

spbvw,Q',~) = & p(x,0,~w)~(x',0',~w) 

but is more fundamentally defined as the Fourier transform of the pressure 
cross-correlation function, Rp(x,0,x',0',7). This correlation function is 
given by: 

Rp(x,O,xf,O;r) = lirn 1 
T-WOO PI! ?p(x,B,t+T)p(x',,',t)dt 

JJ 

Thus, 

Sp(x,O,x',B1,?w) = Ime-iwT'Rp(x,B,xt,B',*)d~ 
- 

(16) 

(17) 

Response Equations With Constant Correlation Assumption 

The analytical definition of Sp(x,B,x',B',fw) over the complete shell 
surface is impractical either theoretically or empirically when the exciting 
pressure results from a highly turbulent boundary layer. Yet this is pre- 
ciselythe condition under which maximum excitation of spacecraft shell-type 
structures occur. Reference 5 attempts to resolve this dilemma by dividing 
the total shell surface into many sub-areas and assuming a different homo- 
geneous pressure acting over each sub-area with appropriate correlation of 
pressures between sub-areas. This is referred to as the constant correla- 
tion assumption in Reference 5. By subdividing the shell, Equation (13) can 
be written as 
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sIJ(+w) = 9 - 
r(x)r(x')dQdxdQ'dx' 08) 

indicate integrations over the individual sub-areas. Then 
correlation assumption, Equation (18) can be simplified as 

sIJ(Aw) = 1 
q ZI( ?w)z",(W C C Sy(?w) r ~I(x,Q>r(x>dQdx k 1 

'k 

@J( x',Q')r(x')dQ'dx' 
> 

(19) 

In essence, this assumption implies that Skl(&) is independent of the precise 
surface location of the spatial coordinatesPwithin the areas Ak and Al. 
When 1 = k, 
1 + k, 

S,kk(?w) is the power spectrum of the pressure on Ak. When 
SF(?w) is the cross-spectrum of the pressures acting on Ak and 

Al, assumed to be represented by the pressures acting at the area centers. 

Equation (19) can be written in terms of matrix algebra as: 

sIJ(Ad) = 1 
9 fw z*(~w> ~~~kl@+'-")l~$;l~T ZI( ) J 

where 

(20) 

&k = 1 Y$(x,Q)r(x)dQ* 
k 

(21) 

541 = $J(x',O')r(x')dO'dxl (22) 

Equations (12) and (20) give the deflection response cross-spectrum for 
points a and b. This cross-spectrum has both a real and imaginary part, 
the real part being the response co-spectrum and the imaginary part being the 
response quad-spectrum. When b=a in the equations, the response power 
spectrum at point a results. For this condition, the imaginary part is 

l-4 



identically zero since a power spectrum by definition has no imaginary part. 
The work of Reference 5 continues from Equation.(X)) by eliminating the 
imaginary part and subsequently writing equations for the response co-spectrum 
which are limited to the positive frequency domain in cycles per second. Since 
the primary interest herein is the response power spectrum, these equations 
are written below for the special case of b = a. 

where 

G(f) = 6 - ($)2)( - ($3) + ‘tI5J & (25) 

H(f) = E[J-$(I - ($)2) - 2c+(1 - ($2) 

(23) 

(24) 

(26) 

The normal coordinate co-spectrum, 
The elements of [C,kl(f)] 

CIJ(f), is the real part of Equation (24). 
and I*(% 1 entering into Equation 

given by the real and imaginary parts, respectively, of Equation 
that equation is written as a function of f for the pressures acting at the 
center of areas Ak and Al. That is, 

CF(f) = ~wcos(2~7) RF(7)d-c 
193 

(27) 

with RF(r) given by 

R$+c) = ;?a & IT pk(t+-h+)dt 
-T 

(28) 

(29) 
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Equations (23) through (29) can be solved directly for the deflection 
response power spectrum at a, but to do so requires a considerable amount of 
computation for shell-type structures. This results from the need to include 
a large number of normal modes and many sub-areas for such shell structures. 
As pointed out in Reference 5, this computation can be reduced by the 
reciprocal of the number of modes if the contributions of Equation (24) are 
neglected except when J = I, i.e., if the normal coordinate co-spectra are 
neglected. 

In Reference 5, a general criterion is developed for determining the 
maximum possible contribution of a normal coordinate co-spectrum. The cri- 
terion indicates that this contribution decreases with decreased modal damping 
and with increased frequency separation of the normal modes. Thus, it is 
possible to neglect most of the normal coordinate co-spectra due to the 
relatively large frequency separation of the modes. Generally, however, for 
shell-type structures, some modes have small separation frequencies. To 
investigate this problem, two response calculations were made, one neglecting 
the normal coordinate co-spectra, i.e., when I # J, and the other including 
them. This response study used theoretical sine-cosine modes and fluctuating 
pressure data determined from wind tunnel tests. In all, nineteen modes 
were used with many of them very closely spaced (for example, 277 and 280 
cps, and 336 and 337 cps). Even so, the maximum percentage error incurred 
by neglecting the normal coordinate co-spectra, was 15 percent in the magni- 
tude of the spectra at any frequency, and 3% based on rms levels. While 
this response study cannot be considered general, it is felt to be typical 
for s shell subjected to buffeting flows excitation. Thus, it appears to be 
justifiable to ne&lect the normal coordinate co-spectra (I # J) for the 
problem under study. This iS especially true when one considers the other 
uncertainties involved, such as use of model wind tunnel aerodynamic data 
as representative of inflight excitation and the complexities of determining 
an adequate structural representation of shells, including structural 
damping. 

With the elimination of the normal coordinate co-spectra, Equatiom(23) 
and (24) become 

cEa(f) = c & C?(f) 
I 

(31) 

The acceleration response power spectra are given in terms of the above by: 
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C?(f) = (2Tc)4 f4 C?(f) (33) 

The associated mean-square responses are given by the integrals of Equations 
(30) though (33), i-e., 

<w2(xa,ea,t)> = Jw c;(f)df 
0 

<q;(t)> = im CF(f)df 

<G2(xa,ea,t)> = Jrn CY(f)df 
0 

<g(t)> = y CF(f)df 
0 

(34) 

(35) 

(36) 

(37) 

Equations (30) through (37) along with Equations (27) and (29) give the 
pertinent response power spectra and the associated mean-square responses 
when the constant correlation assumption is utilized. Such an assumption 
would be justified if the sub-areas selected for this representation were 
small relative to the spatial scale of the buffeting pressures. However, 
for the cases considered in this study, it has been found that this assump- 
tion was not valid. 

Response Equations With Integrated Pressure Correlation 

As discussed in Reference 13, the calculated response spectra of the 
Mercury/Atlas Adapter yielded highly conservative results when compared to 
actual flight measurements if the input pressure was assumed completely 
correlated over each sub-area Ak into which the adapter was divided, Figure 
1. Some discrepancy is expected due to the assumptions used in the develop- 
ment of the response equations, in adtitian to the unknown loading conditions 
applied on the flight vehicle, such as induced bending moments, axial forces, 
etc. However, the predominant reason for any discrepancy is due to the con- 
stant correlation assumption which implies that the measured pressures at 
given locations represent a homogeneous pressure field over the entire sub- 
area surrounding this point. Since the response program (Reference 6) is 
limited to a maximum division of the shell surface into 112 areas, the 
corresponding area sizes could have significant influence on the calculation 
results. The calculated generalized force for each area (employing the con- 
stant correlation assumption) is 



so = sphd L!&!t@I akP (38) 

where Sp(w) is the power spectrum of the homogeneous pressure over each area. 
With a convected pressure field acting over the shell, Equation (38) can be 
overly conservative if the size of the area Ak is significant. Therefore, 
investigations have been made to determine a practical and reasonable modifica- 
tion which may be applied to the response formulation to account for the 
convected pressure field. 

The parameters which would effect the generalized force acting on 
each area are the characteristics of the flow field, the structural mode 
shapes and the area dimensions. Theoretically, the exact method of calcu- 
lating the cross-spectrum contribution of a pair of areas to the generalized 
force is of the following form, 

s?(W) = ~,++ (x,@,x’ ,@‘,d $-&W)$dx’ 3’ ) dAkdAl (39) 

where $1(x,0) and $&-(x',Qr ) represent the ith mode shape over the respective 
surface coordinates x,0 and x',@~. Sp(x,O,x',O~,w) is the cross-spectrum 
of the random pressure field. 

When Ak = Al then Sik(w) represents the spectral density of the gener- 
a ized force acting on a given area Ak. h If the power spectra Skk(,) and 
Sp (u)) of the pressures at representative points within the are ii? s Ak and Al 
are used as a reference and if only the co-spectrum of generalized force (real 
part of Equation (39)) is retsined, Equation (39) can be written as: 

C:(W) ,/s:(w)&; (u')sAL~~kC~(X,O,X',O' ,W)&(X,@)jd~(x' ,O')dAkdAl (40) 

where CN(X,X' ,Q,Q',w) is the normslized co-spectra defining the pressure 
field. Equation (40) is the familiar form for the determination of the 
joint acceptance of the ith mode (References 17 and 24). 

Although theoretically the form of the generalized force as given in 
Equation (40) should be incorporated in any analysis to modify response 
calculations based on a homogeneous pressure over an area, circumstances 
such as core capacity limitations of the IBM 7094 imposed on the response 
program necessitated a simpler method. Consequently an average mode approach 
has been developed which assumes that the generalized force co-spectrum for 
a pair of areas is given by 

where J$IdAk is the integral of the ith mode shape over area Ak. 
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Since the modification employed as an option in the response program 
iS of the form given in Equation (41), comparisons between Equations (40) 
and (41) are presented in Appendix A for a simple structure (simply-supported 
panel) to show the confidence that can be realized in the average mode 
(approximate) approach. 

The evaluation of the equations necessitates a description of the 
correlation function of the pressure field and the modal representation of 
the structure, prI(x,g). For a turbulent fluctuating pressure field the decay 
between two streamwise points is a function of time T and separation distance 
5. Consequently, as a first order approximation, the total streamwise decay 
can be represented by independent functions of time 7 and se_paration distance 
5 as D u e-p7 e-Q1E (42) 

where CL and CY are decay coefficients. Similarly by assuming the lateral 
decay is only a function of space (independent of time), the decay can be 
represented by e -v-l where @  is a decay coefficient and lj is the lateral 
separation. The cross-correlation function of pressure between two points 
separated spatially by distances 5 and Jj (always positive) can be 
approximated by 

R,(e,q,7) = R0(7-7') e-@emBv 

where R0(~-7') represents an auto-correlation function shifted by 7'. 
Now with the definition of the cross-power spectrum given as 

+T 
e -iW'R(k,W)dT 

and by substituting Equation (43), and integrating, the real part (co- 
spectrum) of the power spectra is 

cp( 5, l-w) = Sp(w)c~(S,~,w) = Sp(w) ea5 e+q cam p 

where n = u, CN(~,'Q,W) is the normalized co-spectra 
C 

and Uc = convection velocity = S/7'. 

(43) 

(45) 

Thus, by substituting C~(S,lj,w) as defined in Equation (45) into Equation 
(40, one obtains the co-spectrum of generalized force for areas Ak andAl, 
By summing the resulting equation over k and 1, where the indices take on 
all values from unity to the maximum number of areas, there results the power 
spectrum of the total generalized force for mode I. 
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II 
With this in mind the normal coordinate response power spectra Cq is 

given as 

where the frequency variable has been changed from w to f to agree with 
Equation (31). Thus when using the integrated pressure correlation, the 
above equation is used in place of Equation (31) for determining the shell 
response. 

COMPARISON OF CALCULATED AND FLIGHT ACCELERATION SPECTRA 

Having derived the fundamental response equations, the accuracy of this 
analyses can only be illuminated by actual comparisons between calculated 
response and measured flight data. With flight acceleration data of the 
Mercury/Atlas adapter available from the MA-4 flight, comparisons at six 
Mach numbers were made. All calculated response studies were made with 
the best possible simulation of the actual flight vehicle and aerodynamic 
environment consistent with the capability of the IBM 7094 computer. Using 
the response program (Reference 6), the acceleration spectra and mean- 
squared response were determined for the frequency range of 0-600 cps. 

The vibration data incorporated were determined from analytical results 
modified to match the lower ground vibration test frequencies on the actual 
flight configuration of the Mercury/Atlas adapter. The number of modes used 
was 19. Table I presents the necessary vibration characteristics. With 
very limited damping taken on the ground vibration tests, an estimate of 
the damping ratio had to be incorporated for all modes. A damping ratio 
of .02 measured in lower modes was used throughout the analysis. Admittedly, 
this is a gross assumption, but comparisons made with subsequent Gemini/Titan 
adapter ground vibration test results indicate that this value of damping 
may be reasonable. 

To adequately represent the aerodynamic excitation input, one must 
resort to fluctuat:ng pressure data obtained on the configuration in ques- 
tion from controlled wind tunnel tests. However, in some cases, even this 
information is not available (or reliable) and then one must draw on his 
resourcefulness in assembling available data to estimate the pressure levels 
and correlations that weld exist on the configuration to be analyzed. For 
the response calculations on the Mercury/Atlas adapter, three sources of 
aerodynamic data were available. 
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TABLE I 
VIBRATION CHARAC?TRRISTICS MERCURY/ARLAS ADAPTER 

Damping Ratio = .02 (All Modes) 

Mode No. 
Circus. Long. 

n In 

Generalized 
Mass 

Lb-Sec2/In Frequency (cps) 

1 
1 
2 

: 

; 
1 
2 

; 
2 
3 
2 

: 
3 
1 
2 

90.34 
83.08 
78.60 
79.74 
66.60 

109.24 
66.85 
80.57 
77.69 
66.02 
67.07 
78.29 
64.96 
77.67 
80.29 

2 :: 
77:95 
73.77 

172 
215 
248 
277 
280 
288 
313 
336 
337 
348 
406 
415 
438 
464 
469 
507 
508 
529 
532 

There were two wind tunnel tests run on scaled configurations: (1) 7% 
scale, and (2) 32% scale. The reduced pressure data for the 7$ scale test 
is presented in Reference 7 and for the 32% scale tests, References 8 and 
10. The third source consisted of limited flight data on the pressure 
levels from the series of Mercury/Atlas flights. Coe (Reference 25) illumi- 
nates the fact that the fluctuating pressure levels from the 32$ scale tests 
are in general considerably higher (especially around Mach 1.0) than the 
flight data. Comparison of the 7% scale wind tunnel pressure data with 
flight data shows these data to be more representative of the inflight 
pressure levels. Consequently, these data were used for the response calcu- 
lations. Statistically reduced pressure data were available at 3 Mach 
numbers: 0.9, 1.0, and 1.18, for this purpose. 

To provide greater Mach number coverage the limited data discussed 
above was extrapolated to Mach numbers of 0.6, 1.5, and 2.0. The power 
spectra of the pressure at these Mach numbers were determined from scaling 
relations based on convected homogeneous turbulence. This relationship 
is based on the fact that the mean-squared pressure is given by: 

<p% = ; Sp( f)df 
0 

(47) 
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and the reduced frequency is 

R’$ co (48) 

where D is a characteristic length of the model. Therefore, the relation- 
ship between nC Prms and the pressure power spectra is 

If it is assumed that the power spectra has approximately the same distribu- 
tion with dimensionless frequency at all Mach numbers, then the level of the 
power spectra can be determined by the relationship 

sp (n), = k Sn(Q), 

where the subscripts indicate different Mach numbers and 

Likewise, the frequencies are scaled according to 

($(=(?i-), 

(50) 

(51) 

Consequently, using Equations (50) and (51) as the scaling criteria, the 
response calculations at Mach 0.6, 1.5, and 2.0 were run using as refe- 
rence the pressure levels at Mach 1.18 (7% scale). The pressure power 
spectra were scaled with the aid of the dashed curve shown in Figure 8. 
The points shown in Figure 8 are average values of XPrms determined from 
the collation of fluctuating pressure data of wind tunnel tests on the 
Mercury/Atlas configuration (Reference 12). All data used for scaling 
pressure input are given in Table II. 

For all response studies, the adapter was divided into 80 sub-areas, 
4 streamwise and 20 circumferentially, with the average size of each area 
being 12.7 inches x 11 inches. The Form I expansion (Figure 9) was used 
in the analysis which required as input the pressure power-spectrum for each 
area in a strip, and the normalized co-spectrum between all areas within 
the two strips. The modification to account for the pressure variations 
over each area was incorporated in the calculations. If normalized co- 
spectrum data were not available from wind tunnel tests, these terms were 
calculated from Equation (B4) in Appendix B. 
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AERODYNAMIC INPUT 

prms 
Dynamic Pressure 

Mach No. Pressure Data 32 qd-Lb/Ft* 

0.60 Extrapolated 17.50 350 

TABLE II 

DATA - MERCURY/ATLAS ADAPTER 

Scale Factors* 

0.90 7% Scale 37.05 570 

1.00 7% Scale 40.30 650 

1.18 7% Scale 28.49 770 

1.50 Extrapolated 21.60 900 

2.00 Extrapolated 18.53 975 

qhe scale factors were obtained from Equations (I$) and (51) using 
as reference the 74’0 Scale Wind Tunnel data at M = 1.18. 

AcPrms Pressure Frequency 
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.o65 ---- --- 

.& ____ ___ 

l 037 1.00 1.00 

.024 l 354 1.31 

.01g 9135 l-75 
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Figure 8 - Fluctuating Pressure Coefficients, Mercury/Atlas Adapter 

Form 1 option Form 2 option 

Figure 9 - Correlation Areas Used in Response Computer Program 



The response program was used to determine the acceleration response 
at an adapter station at which flight data were available. The actual in- 
flight (MA-k) values of g's rms, Figure 10, were obtsined from Reference 
26 for the frequency band of 0-600 cps. The calculated rms values for the 
same frequency band are shown for comparison. The comparison of the over- 
all levels for the six Mach numbers at which the response was calculated is 
surprisingly good, probably better than should be expected for such a com- 
plex problem. The calculated response at Mach numbers 0.6, 1.5, and 2.0 
were obtained by scaling the pressure power spectra (Mach 1.18) using Equa- 
tions (50) and (51). The results indicate that this scaling technique is 
valid in lieu of measured pressure data especially since the trend of the 
calculated rms values follows the actual flight data very well. 

- Measured, MA-4 flight 

Calculated, using pressure 

data - 7% scale (ref. 7) 

Calculated, scaled pressure 

dato - using EQS 50 and 51 

i 
u 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

Mach no. 

Figure 10 - Comparison of rms Acceleration - Measured and Calculated 



If the input, 
number as shown in 

gPrmsj and the output5 grms, is plotted versus Mach 
Figure 11, it is seen that the pressure at Mach 2.0 

is twice as effective in producing response as that at Mach 1.0. 
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Figure 11 - rms Pressure and Acceleration vs Mach Number 

The comparison of the acceleration power spectrum 0-600 cps at Mach 
1.0 (7%~ scale pressure data) is shown in Figure 12, and the comparison at 
Mach 2.0, using extrapolated pressure data, is shown in Figure 13. These 
were typical of the other runs in that the order of magnitude of the peaks 
are compatible with the flight response although there exists a shifting of 
the spectra. This frequency shifting might be expected based on the premise 
that the modified analytical vibration data which were used in the response 
studies could be significantly different than the inflight vibration charac- 
teristics. However, unpublished experimental data of the Mercury/Atlas con- 
figuration have shown that the in-plane loading(axia1 compression and bending) 
has no significant effect on the vibration characteristics. Other factors 
which might affect the vibration of the structure are steady-state aerodyna- 
mics, temperature, and pressure differential. Although these conditions 
would affect, in some degree, the response of the vehicle, the variation of 
particular configurations and flight trajectories will usually circumvent 
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Figure 12 -Measured and Calculated Acceleration Spectra at Mach 1.0 - Mercury/Atlas Adapter 

adequate representation of such loading for response predictions. W ith the 
results obtained from these response comparison studies, it is felt the 
over-all response characteristics can be obtained if adequate aerodynamic 
input is available for a particular configuration. 

Concluding Remarks 

The principal development of this research is a method of predicting 
the response of complex shells to fluctuating pressure. This has resulted 
in a computer program for calculating the acceleration and/or deflection 
response spectra at discrete locations on the shell. The computation scheme 
requires as input either analytical or experimental vibration data, and 
fluctuating pressure power spectra and co-spectra data from wind tunnel 
tests supplemented by empirically derived analytical expressions. Although 
the present response analysis has been based on the use of experimentally 
obtained aerodynamic data, an analytical study of a wave guide model for 
turbulent shear flow has been initiated and with further development gives 
hope that the fundamental mechanism will be understood. 

Comparison studies were made between measured inflight data and calcu- 
lated acceleration response of the Mercury/Atlas adapter for Mach numbers 
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Figure 13 - Measured and Calculated Acceleration at Mach 2.0 - Mercury/Atlas Adapter 

0.6 to 2.0. It was found that rms acceleration levels can be predicted 
although the individual spectral distribution might not be in agreement at 
some frequencies. If good vibration data and wind tunnel pressure data are 
available, it is felt that the computed shell response will provide an 
adequate estimate of the actual flight vehicle response to buffeting flows. 
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APPENDIX A 

COMPARISON OF THE AVERAGE AND EXACT CORRFZATION METHODS 

The development of the shell response equations has included a modifica- 
tion to the constant correlation assumption which accounts for the convected 
pressure field over each'sub-area, Ak, of the shell structure. The total 
decay of the pressure is assumed to be represented by independent functions 
of time 7, streamwise separation distance k, and lateral separation 7\. With 
this assumption, the normalized co-spectrum can be written 

(Al) 

To correctly account for this form of the pressure field, the generalized 
force equation should be of the form 

ck,"(w) = 
1 (~42 > 

where Sp kk(~~) and S"(LU) are the homogeneous power spectra for areas Ak and AQ, 

respectively. HowEver, due to limitations of core storage of the computer, 
Equation (A2) was simplified by assuming an average mode approach such that 
only the normalized co-spectrum is integrated over each sub-area which results 
in 

Therefore, from Equations (A2) and (P.3) a frequency dependent modification 
factor Ekk(,,!) for each method can be determined which relates the generalized 
force and generalized homogeneous pressure for an area & by 

SF(w) = SF(w) A; E&(w) (A4) 

To illuminate the differences of these two methods, a comparison study 
was made for a simply-supported panel, Figure Al, in which the mode shape can 
be represented by 

mnx pl(x, y) = sin - sin nny a b (A5) 

where a, b are the panel dimensions in the x, y directions, respectively, 
and m, n are the corresponding mode numbers. Therefore, the integration of 
Equation (A2) using Equations (Al) and (A5) yields the modification factor 
for the exact method, which is 
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where Q = WE/U, z1 = sin2(mmu+1)+sin2(mxX,) 
a a 

$3 = (CtE )2-i22 

A = (cyg )2+(=)2-fi2 a z3 = cos mnS - - cos g (x,+1 + x,) a 

B = 2clgn 

z2= cosq- 2mG a >+cos (7) 

z4 = cos 4 (q+1 + XJ + cos q 5 

C = A*-B2 

Dn2AB 

E 3 pq2+(= * 
b) 

z5 

Wl = 2 cos ( nJryv+l +cos2(nXY, 
b ) b) 

= sin2 nnYv+l -l-sin2 nJrYv w2 ( b) (-- b) 

w3 
= sin nrrYv+l sin - n7rYv 

b b 

w4 = cos nxYV+l nsiY, cos - 
b b 

w 5 = sin E!l 
b 

W) 
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Figure Al - Panel Configuration for Study of Modification Factors 

Likewise, an average mode term is found from integration of Equation (A3), 

where K  = 

and limit Gosh Bn-1 = 3 

?tl- O m2 2 

It was found that for some particular combinations of mode shapes and area 
locations of the panel the two methods could yield significantly different 
results. However, although this discrepancy exists for certain sub-areas 
this, in itself, is meaningless since the overall acceleration or deflection 
spectra is the quantity that must be compared. The normal coordinate power 
spectra is given by 
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where KI(f) = 1 

M12"14 l-(f/fI)212 + (25If/fI)2} 

(d* Ik = integral of the ith mode shape over area Ak 

and from this term the acceleration and/or deflection spectra can be obtained. 
For aqy frequency (f) at which Equation (A-8) is calculated KI(f) will be a 
constant. Therefore, the investigation of the triple product term will then be 
the primary area of comparison. 

The form of the pressure input for computer purposes is to form a normalizel 
co-spectrum matrix in which the elements of the matrix represent correlations 
between pairs of areas. The response program (Reference 6) allows two forms of 
input as shown in Figure 9, in which pressure correlation is assumed over all 
cross-hatched areas. The Form I expansion assumes pressure correlation over 
all areas in two adjacent strips, whereas the Form II expansion assumes corre- 
lations over all areas in a strip and that these then are representative for 
all strips in the structure. 

To fully develop the comparisons study, a representative panel has been 
chosen in which the aspect ratio (a/b) is 0.5 and which is divided into 8 . equal areas. (S ee inset in Figure A2.) Since the Form II expansion is to be 
employed here, elements in the pressure co-spectrum matrix can be computed from 
the typical strip, for example l-2 in Figure A2. The normalized co-spectrum 
matrix (normalized with respect to reference pressure power spectra for the 
respective sub-areas) for this typical strip is 

r 
PI 

L 
1 

= $2 
N 

CF 

1 
I 

where Cl; is the normalized pressure co-spectrum between areas 1 and 2 and 
is representative for all other strips in the structure. The actual pressure 
levels are then introduced by the triple product 

[*I [r-p] where 
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Figure A2 - C  om p arison of Exact and Average Method Factors. 

If for the purposes of comparison and simplicity the normalized co-spectrum 
terms Cl2 N 

are neglected, then Equation (A8) can be written as 

C;I(f) = KI(f) "c 1&,I' C,kk(f) = KI(f) "c 1&d::(f) 
k=l k=l 

(*9) 

As stated previously, this equation is based on the assumption that over each 
area Ak the pressure is perfectly correlated. To correct for the flow field 
decay over each area, the normalized co-spectrum matrix is modified and conse- 
quently for the approximate method, Equation (Ag) becomes 

CII(f) 9 = KI(f) "c Ekk(f)Skk(f)A2 k=l Av P k  No) 

where EEi is defined by Equation (A7) with K representing the ratio 

( j%kdAk? 

Ak 
for the panel. 
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In a similar manner, the exact form of the modified normal coordinate power 
spectra can be written as 

P(f) nkk 
4E = KI(f) C k(f)sF(f)*k2 

k=l 
ml) 

where g is defined by Equation (A6). 

The maximum portion of the total mean-squared response for any frequency 
bandwidth is contributed from the area at or near the reson 
of the structure. Tf 

e frequencies 
With this in mind comparative values of C as found from 

Equations (AlO)and (All) were evaluated at frequencies f, and, consequently, 
reduced frequency fJ, which corresponded to the panel natural frequencies. The 
frequency equation for a simply-supported panel is 

%n= &L2+,2,2] 
pha4 

where D = plate modulus = Eh3/12(1-T2) 
E = modulus of elasticity (psi) 
h= thickness of panel 
P = mass density of panel 
r = aspect ratio = a/b 

m,n = mode numbers in x,y direction, respectively 

and for a given panel, the non-dimensional frequencies at which the normal 
coordinate power spectrawere calculated are given by 

= m2+n2r2. 

bw 

vfore for the panel illustrated in Figure A2 (r = 0.5), the evaluation of 
C Ekk(f) was determined at ratios of 

k=l 
R dictated by Equation (Al3). The 

comparison as found from this summation would correspond to the evaluation of 
CII(f) if the pressure input $(f) was identical for both areas in a strip. 
F&ure A2 shows the comparison of the modification factors for a streamwise 
decay rate cx of 0.05 and a lateral decay rate @  of zero where the m,n 
shown along the abscissa refer to the panel modes which were used in the cal- 
culations. The results indicate there exists fair agreement except for the 
calculation for the 2,l mode. Additional studies have shown that the dis- 
crepancy between the two methods is mainly influenced by the ratio of the 
streamwise dimension 5 to the structural wave length a/m. In other words 
it is better to divide the structure surface into sub-areas in which the 
streamwise length 5 is small in comparison with the smallest structural 
wave length a/m encountered in the response. Consequently in using the 
average mode method for modifying the response calculations, it is better to 
divide the structure into smaller streamwise dimensions 5 at the sacrifice 
of larger circutnferentiaLL dimensions q. 
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APPENDIX B 

CALCULATION OF NORMALIZED CO-SPECTRUM TERM 

An interesting aspect which results when using the simple convected 
flow pattern to modify the response equations is that terms inherent in the 
normalized co-spectrum matrix [I- ], could be calculated in lieu of adequate 
measured wind tunnel data. As discussed previously, the response equations 
have been formulated using an average mode approach in which the generalized 
force co-spectrum between two sub-areas Ak and A! is given by 

(Bl> 4”(w) = -is ,Iz(w) S;m r'I dAk .['I dAfl s r CN(x, 8, x; 0: W) d&dAR 
% AQ A;e' % 

with the normalized pressure co-spectra defined by 

cN (5, r(, w) = eeCYS ewBT COSR (BP > 

EL 
where 0 = *c, The terms 5 and Jj refer to separation distances in the stream- 
wise and circumferential directions, respectively and cy, p are the associated 
spatial decay constants. For computation purposes 6, 7 are the area dimen- 
sions of each sub-area in which the structure is divided. 

To calculate the normal co-ordinate power spectra (Equation (31)), a 
normalized co-spectra matrix must be input which dependson the form of expan- 
sion employed, Figure 9. The 
be calculated by 

ck,a(w) = ii& ,r, 'A Q 

Upon substitution of Equation (B2) into (B3) and integrating, the normalized 
co-spectrum between two areas k and R is 

#+I, = 1 
[ (aE f+Q2 lb j2 

terms of the normalized co-spectra matrix can 

c#, % wo> d% dAQ (B3 > 

i 

[(c~~)~-Cl~][e-~~'cos k R + 

e- (k-2 >ak cos( k-2)&2e -(k-l)%os(k-l)n] 

+ 04) 

where 6kl = 1. if k = 1. . 
=o if k # 1. 
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and the k and R refer to the separation longitudinally (flow direction) and 
circumferentially of the areas, respectively. Referring to Figure 9 for 
area notation, then if k = R = l., 
for any area as given by 

C~A(W) becomes the modification factor 

035 > 

cash CUE COSR-~]+~CYS sinh 65 SinR, 1 

When k=2 and &=l, Equation (B4) gives a normalized co-spectrum between two 
adjacent areas in a longitudinal strip such as areas 1 and 2, and if k=3, 
I= h,this refers to areas 1 and 3, etc. Mhen k=l. and R=2., this term refers 
to correlation between two areas in adjacent longitudinal strips such as areas 
1 and 5. Therefore, the term Ci2(w) would be a calculated normalized co-spectrum 
between two areas which are separated by one area longitudinally and are in 
adjacent strips such as areas 1 and 7, Figure 9. Although this method of 
inputting the normalized co-spectrum appears to involve rather "rash" assump- 
tions, it does permit a means of determining the response with limited wind 
tunnel data. Also, the method is not as unreasonable as one might think since 
measured wind tunnel test data do roughly fit the assumption of a simple 
convected flow pattern, Equation (B2). Therefore, the calculated co-spectrum 
terms provide a method for use in the computer program, in lieu of sufficient 
wind tunnel data, if representative decay rates (CY, p) are known or can be 
estimated. This option has been introduced into the response program 
(Reference 6). 
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